3.3.57 \(\int \frac {\log (c (a+\frac {b}{x^3})^p)}{d+e x} \, dx\) [257]

3.3.57.1 Optimal result
3.3.57.2 Mathematica [A] (verified)
3.3.57.3 Rubi [A] (verified)
3.3.57.4 Maple [C] (warning: unable to verify)
3.3.57.5 Fricas [F]
3.3.57.6 Sympy [F(-1)]
3.3.57.7 Maxima [F]
3.3.57.8 Giac [F]
3.3.57.9 Mupad [F(-1)]

3.3.57.1 Optimal result

Integrand size = 20, antiderivative size = 344 \[ \int \frac {\log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=\frac {\log \left (c \left (a+\frac {b}{x^3}\right )^p\right ) \log (d+e x)}{e}+\frac {3 p \log \left (-\frac {e x}{d}\right ) \log (d+e x)}{e}-\frac {p \log \left (-\frac {e \left (\sqrt [3]{b}+\sqrt [3]{a} x\right )}{\sqrt [3]{a} d-\sqrt [3]{b} e}\right ) \log (d+e x)}{e}-\frac {p \log \left (-\frac {e \left ((-1)^{2/3} \sqrt [3]{b}+\sqrt [3]{a} x\right )}{\sqrt [3]{a} d-(-1)^{2/3} \sqrt [3]{b} e}\right ) \log (d+e x)}{e}-\frac {p \log \left (\frac {\sqrt [3]{-1} e \left (\sqrt [3]{b}+(-1)^{2/3} \sqrt [3]{a} x\right )}{\sqrt [3]{a} d+\sqrt [3]{-1} \sqrt [3]{b} e}\right ) \log (d+e x)}{e}-\frac {p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d-\sqrt [3]{b} e}\right )}{e}-\frac {p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d+\sqrt [3]{-1} \sqrt [3]{b} e}\right )}{e}-\frac {p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d-(-1)^{2/3} \sqrt [3]{b} e}\right )}{e}+\frac {3 p \operatorname {PolyLog}\left (2,1+\frac {e x}{d}\right )}{e} \]

output
ln(c*(a+b/x^3)^p)*ln(e*x+d)/e+3*p*ln(-e*x/d)*ln(e*x+d)/e-p*ln(-e*(b^(1/3)+ 
a^(1/3)*x)/(a^(1/3)*d-b^(1/3)*e))*ln(e*x+d)/e-p*ln(-e*((-1)^(2/3)*b^(1/3)+ 
a^(1/3)*x)/(a^(1/3)*d-(-1)^(2/3)*b^(1/3)*e))*ln(e*x+d)/e-p*ln((-1)^(1/3)*e 
*(b^(1/3)+(-1)^(2/3)*a^(1/3)*x)/(a^(1/3)*d+(-1)^(1/3)*b^(1/3)*e))*ln(e*x+d 
)/e-p*polylog(2,a^(1/3)*(e*x+d)/(a^(1/3)*d-b^(1/3)*e))/e-p*polylog(2,a^(1/ 
3)*(e*x+d)/(a^(1/3)*d+(-1)^(1/3)*b^(1/3)*e))/e-p*polylog(2,a^(1/3)*(e*x+d) 
/(a^(1/3)*d-(-1)^(2/3)*b^(1/3)*e))/e+3*p*polylog(2,1+e*x/d)/e
 
3.3.57.2 Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 350, normalized size of antiderivative = 1.02 \[ \int \frac {\log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=\frac {\log \left (c \left (a+\frac {b}{x^3}\right )^p\right ) \log (d+e x)}{e}+\frac {3 p \log \left (-\frac {e x}{d}\right ) \log (d+e x)}{e}-\frac {p \log \left (-\frac {e \left (\sqrt [3]{b}+\sqrt [3]{a} x\right )}{\sqrt [3]{a} d-\sqrt [3]{b} e}\right ) \log (d+e x)}{e}-\frac {p \log \left (-\frac {(-1)^{2/3} e \left (\sqrt [3]{b}-\sqrt [3]{-1} \sqrt [3]{a} x\right )}{\sqrt [3]{a} d-(-1)^{2/3} \sqrt [3]{b} e}\right ) \log (d+e x)}{e}-\frac {p \log \left (\frac {\sqrt [3]{-1} e \left (\sqrt [3]{b}+(-1)^{2/3} \sqrt [3]{a} x\right )}{\sqrt [3]{a} d+\sqrt [3]{-1} \sqrt [3]{b} e}\right ) \log (d+e x)}{e}+\frac {3 p \operatorname {PolyLog}\left (2,\frac {d+e x}{d}\right )}{e}-\frac {p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d-\sqrt [3]{b} e}\right )}{e}-\frac {p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d+\sqrt [3]{-1} \sqrt [3]{b} e}\right )}{e}-\frac {p \operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d-(-1)^{2/3} \sqrt [3]{b} e}\right )}{e} \]

input
Integrate[Log[c*(a + b/x^3)^p]/(d + e*x),x]
 
output
(Log[c*(a + b/x^3)^p]*Log[d + e*x])/e + (3*p*Log[-((e*x)/d)]*Log[d + e*x]) 
/e - (p*Log[-((e*(b^(1/3) + a^(1/3)*x))/(a^(1/3)*d - b^(1/3)*e))]*Log[d + 
e*x])/e - (p*Log[-(((-1)^(2/3)*e*(b^(1/3) - (-1)^(1/3)*a^(1/3)*x))/(a^(1/3 
)*d - (-1)^(2/3)*b^(1/3)*e))]*Log[d + e*x])/e - (p*Log[((-1)^(1/3)*e*(b^(1 
/3) + (-1)^(2/3)*a^(1/3)*x))/(a^(1/3)*d + (-1)^(1/3)*b^(1/3)*e)]*Log[d + e 
*x])/e + (3*p*PolyLog[2, (d + e*x)/d])/e - (p*PolyLog[2, (a^(1/3)*(d + e*x 
))/(a^(1/3)*d - b^(1/3)*e)])/e - (p*PolyLog[2, (a^(1/3)*(d + e*x))/(a^(1/3 
)*d + (-1)^(1/3)*b^(1/3)*e)])/e - (p*PolyLog[2, (a^(1/3)*(d + e*x))/(a^(1/ 
3)*d - (-1)^(2/3)*b^(1/3)*e)])/e
 
3.3.57.3 Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 354, normalized size of antiderivative = 1.03, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2912, 2005, 2863, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx\)

\(\Big \downarrow \) 2912

\(\displaystyle \frac {3 b p \int \frac {\log (d+e x)}{\left (a+\frac {b}{x^3}\right ) x^4}dx}{e}+\frac {\log (d+e x) \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{e}\)

\(\Big \downarrow \) 2005

\(\displaystyle \frac {3 b p \int \frac {\log (d+e x)}{x \left (a x^3+b\right )}dx}{e}+\frac {\log (d+e x) \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{e}\)

\(\Big \downarrow \) 2863

\(\displaystyle \frac {3 b p \int \left (\frac {\log (d+e x)}{b x}-\frac {a x^2 \log (d+e x)}{b \left (a x^3+b\right )}\right )dx}{e}+\frac {\log (d+e x) \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{e}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\log (d+e x) \log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{e}+\frac {3 b p \left (-\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d-\sqrt [3]{b} e}\right )}{3 b}-\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d+\sqrt [3]{-1} \sqrt [3]{b} e}\right )}{3 b}-\frac {\operatorname {PolyLog}\left (2,\frac {\sqrt [3]{a} (d+e x)}{\sqrt [3]{a} d-(-1)^{2/3} \sqrt [3]{b} e}\right )}{3 b}-\frac {\log (d+e x) \log \left (-\frac {e \left (\sqrt [3]{a} x+\sqrt [3]{b}\right )}{\sqrt [3]{a} d-\sqrt [3]{b} e}\right )}{3 b}-\frac {\log (d+e x) \log \left (-\frac {e \left (\sqrt [3]{a} x+(-1)^{2/3} \sqrt [3]{b}\right )}{\sqrt [3]{a} d-(-1)^{2/3} \sqrt [3]{b} e}\right )}{3 b}-\frac {\log (d+e x) \log \left (\frac {\sqrt [3]{-1} e \left ((-1)^{2/3} \sqrt [3]{a} x+\sqrt [3]{b}\right )}{\sqrt [3]{a} d+\sqrt [3]{-1} \sqrt [3]{b} e}\right )}{3 b}+\frac {\operatorname {PolyLog}\left (2,\frac {e x}{d}+1\right )}{b}+\frac {\log \left (-\frac {e x}{d}\right ) \log (d+e x)}{b}\right )}{e}\)

input
Int[Log[c*(a + b/x^3)^p]/(d + e*x),x]
 
output
(Log[c*(a + b/x^3)^p]*Log[d + e*x])/e + (3*b*p*((Log[-((e*x)/d)]*Log[d + e 
*x])/b - (Log[-((e*(b^(1/3) + a^(1/3)*x))/(a^(1/3)*d - b^(1/3)*e))]*Log[d 
+ e*x])/(3*b) - (Log[-((e*((-1)^(2/3)*b^(1/3) + a^(1/3)*x))/(a^(1/3)*d - ( 
-1)^(2/3)*b^(1/3)*e))]*Log[d + e*x])/(3*b) - (Log[((-1)^(1/3)*e*(b^(1/3) + 
 (-1)^(2/3)*a^(1/3)*x))/(a^(1/3)*d + (-1)^(1/3)*b^(1/3)*e)]*Log[d + e*x])/ 
(3*b) - PolyLog[2, (a^(1/3)*(d + e*x))/(a^(1/3)*d - b^(1/3)*e)]/(3*b) - Po 
lyLog[2, (a^(1/3)*(d + e*x))/(a^(1/3)*d + (-1)^(1/3)*b^(1/3)*e)]/(3*b) - P 
olyLog[2, (a^(1/3)*(d + e*x))/(a^(1/3)*d - (-1)^(2/3)*b^(1/3)*e)]/(3*b) + 
PolyLog[2, 1 + (e*x)/d]/b))/e
 

3.3.57.3.1 Defintions of rubi rules used

rule 2005
Int[(Fx_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[x^(m 
+ n*p)*(b + a/x^n)^p*Fx, x] /; FreeQ[{a, b, m, n}, x] && IntegerQ[p] && Neg 
Q[n]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2863
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_)) 
^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a 
 + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a, b, c 
, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]
 

rule 2912
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))/((f_.) + (g_. 
)*(x_)), x_Symbol] :> Simp[Log[f + g*x]*((a + b*Log[c*(d + e*x^n)^p])/g), x 
] - Simp[b*e*n*(p/g)   Int[x^(n - 1)*(Log[f + g*x]/(d + e*x^n)), x], x] /; 
FreeQ[{a, b, c, d, e, f, g, n, p}, x] && RationalQ[n]
 
3.3.57.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.57 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.41

method result size
parts \(\frac {\ln \left (c \left (a +\frac {b}{x^{3}}\right )^{p}\right ) \ln \left (e x +d \right )}{e}+3 p b \,e^{2} \left (\frac {\operatorname {dilog}\left (-\frac {e x}{d}\right )+\ln \left (e x +d \right ) \ln \left (-\frac {e x}{d}\right )}{b \,e^{3}}-\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (\textit {\_Z}^{3} a -3 \textit {\_Z}^{2} a d +3 \textit {\_Z} a \,d^{2}-a \,d^{3}+e^{3} b \right )}{\sum }\left (\ln \left (e x +d \right ) \ln \left (\frac {-e x +\textit {\_R1} -d}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {-e x +\textit {\_R1} -d}{\textit {\_R1}}\right )\right )}{3 b \,e^{3}}\right )\) \(142\)

input
int(ln(c*(a+b/x^3)^p)/(e*x+d),x,method=_RETURNVERBOSE)
 
output
ln(c*(a+b/x^3)^p)*ln(e*x+d)/e+3*p*b*e^2*(1/b/e^3*(dilog(-e*x/d)+ln(e*x+d)* 
ln(-e*x/d))-1/3/b/e^3*sum(ln(e*x+d)*ln((-e*x+_R1-d)/_R1)+dilog((-e*x+_R1-d 
)/_R1),_R1=RootOf(_Z^3*a-3*_Z^2*a*d+3*_Z*a*d^2-a*d^3+b*e^3)))
 
3.3.57.5 Fricas [F]

\[ \int \frac {\log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=\int { \frac {\log \left ({\left (a + \frac {b}{x^{3}}\right )}^{p} c\right )}{e x + d} \,d x } \]

input
integrate(log(c*(a+b/x^3)^p)/(e*x+d),x, algorithm="fricas")
 
output
integral(log(c*((a*x^3 + b)/x^3)^p)/(e*x + d), x)
 
3.3.57.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=\text {Timed out} \]

input
integrate(ln(c*(a+b/x**3)**p)/(e*x+d),x)
 
output
Timed out
 
3.3.57.7 Maxima [F]

\[ \int \frac {\log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=\int { \frac {\log \left ({\left (a + \frac {b}{x^{3}}\right )}^{p} c\right )}{e x + d} \,d x } \]

input
integrate(log(c*(a+b/x^3)^p)/(e*x+d),x, algorithm="maxima")
 
output
integrate(log((a + b/x^3)^p*c)/(e*x + d), x)
 
3.3.57.8 Giac [F]

\[ \int \frac {\log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=\int { \frac {\log \left ({\left (a + \frac {b}{x^{3}}\right )}^{p} c\right )}{e x + d} \,d x } \]

input
integrate(log(c*(a+b/x^3)^p)/(e*x+d),x, algorithm="giac")
 
output
integrate(log((a + b/x^3)^p*c)/(e*x + d), x)
 
3.3.57.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\log \left (c \left (a+\frac {b}{x^3}\right )^p\right )}{d+e x} \, dx=\int \frac {\ln \left (c\,{\left (a+\frac {b}{x^3}\right )}^p\right )}{d+e\,x} \,d x \]

input
int(log(c*(a + b/x^3)^p)/(d + e*x),x)
 
output
int(log(c*(a + b/x^3)^p)/(d + e*x), x)